Abstract

(1) This study examined the effects of dopamine D(1)- and D(2)-like receptor activation upon basolateral K(+) (I(K)) currents and changes in membrane potential in opossum kidney (OK) cells. (2) The addition of amphotericin B (3 micro g ml(-1)) to the apical side resulted in a rapid increase in I(K), this effect being markedly inhibited by the addition of the K(+) channel blockers barium chloride (1 mM) or glibenclamide (10 micro M), but not apamin (1 micro M). The K(+) channel opener pinacidil increased the amphotericin B-induced I(K). The selective D(2)-like receptor agonist quinerolane increased, in a concentration dependent manner (EC(50)=136 nM), I(K) across the basolateral membrane, this effect being abolished by pre-treatment with pertussis toxin (PTX), S-sulpiride (selective D(2)-like receptor antagonist) and glibenclamide. The selective D(1)-like receptor agonist SKF 38393 did not change I(K). Both H-89 (PKA inhibitor) and chelerythrine (PKC inhibitor) failed to prevent the stimulatory effect of quinerolane upon I(K). (3) Quinerolane did not change basal levels of cyclic AMP and also failed to affect the forskolin-induced increase in cyclic AMP levels. (4) The stimulation of D(2)-like receptor was associated with a rapid hyperpolarizing effect, whereas D(1)-like receptor activation was accompanied by increases in cell membrane potential. The hyperpolarizing effect of quinerolane (EC(50)=129 nM) was prevented by pre-treatment with PTX, S-sulpiride and glibenclamide. (5) It is concluded that stimulation of dopamine D(2)-like, but not D(1)-like, receptors coupled to PTX-sensitive G proteins of the G(i/o) class produce membrane hyperpolarization through opening of K(ATP) channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.