Abstract

Photonic nanojets (PNJs) are subwavelength jet-like propagating waves generated by illuminating a dielectric microstructure with an electromagnetic wave, conventionally a linearly polarized plane wave. Here, we study the donut-like PNJ produced when a circularly polarized vortex beam is used instead. This novel PNJ also has a reverse energy flow at the donut-like focal plane depending on both the optical vortex topological charge and microsphere size. Our tunable PNJ, which we investigate numerically and analytically, can find applications in optical micromanipulation and trapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.