Abstract
BackgroundThe interaction between the karyoplast and cytoplast plays an important role in the efficiency of somatic cell nuclear transfer (SCNT), but the underlying mechanism remains unclear. It is generally accepted that in nuclear transfer embryos, the reprogramming of gene expression is induced by epigenetic mechanisms and does not involve modifications of DNA sequences. In cattle, oocytes with various mitochondrial DNA (mtDNA) haplotypes usually have different ATP content and can further affect the efficiency of in vitro production of embryos. As mtDNA comes from the recipient oocyte during SCNT and is regulated by genes in the donor nucleus, it is a perfect model to investigate the interaction between donor nuclei and host oocytes in SCNT.ResultsWe investigated whether the in vitro development of reconstructed bovine embryos produced by SCNT would be influenced by mtDNA haplotype compatibility between the oocytes and donor cells. Embryos from homotype A-A or B-B showed significantly higher developmental ability at blastocyst stages than the heterotype A-B or B-A combinations. Post-implantation development ability, pregnancy rate up to day 90 of gestation, as well as percent of term births were higher in the homotype SCNT groups than in the heterotype groups. In addition, homotype and heterotype SCNT embryos showed different methylation patterns of histone 3-lysine 9 (H3K9) genome-wide and at pluripotency-related genes (Oct-4, Sox-2, Nanog).ConclusionBoth histone and DNA methylation show that homotype SCNT blastocysts have a more successful epigenetic asymmetry pattern than heterotype SCNT blastocysts, which indicates more complete nuclear reprogramming. This may result from variability in their epigenetic patterns and responses to nuclear reprogramming. This suggests that the compatibility of mtDNA haplotypes between donor cells and host oocytes can significantly affect the developmental competence of reconstructed embryos in SCNT, and may include an epigenetic mechanism.
Highlights
The interaction between the karyoplast and cytoplast plays an important role in the efficiency of somatic cell nuclear transfer (SCNT), but the underlying mechanism remains unclear
Low methylation levels in the promoter regions of these genes is thought to correlate with their high expression levels at the blastocyst stage. Both histone and DNA methylation show that homotype SCNT blastocysts have an epigenetic status closer to the control in vitro fertilization (IVF) embryos than heterotype SCNT blastocysts
A total of 2625 cumulus-oocyte complexes (COCs) were obtained from 282 Ovum Pick-Up (OPU) procedures. 2103 high-quality MII oocytes were used for SCNT and 522 for IVF
Summary
The interaction between the karyoplast and cytoplast plays an important role in the efficiency of somatic cell nuclear transfer (SCNT), but the underlying mechanism remains unclear. It is generally accepted that in nuclear transfer embryos, the reprogramming of gene expression is induced by epigenetic mechanisms and does not involve modifications of DNA sequences. It is generally accepted that in nuclear transfer embryos, the reprogramming of gene expression is linked to epigenetic mechanisms and does not involve modification of DNA sequences. Epigenetic modifications such as DNA methylation of CpG islands, core histone acetylation, phosphorylation, ubiquitination and ribosylation can eventually alter the transcriptional status of individual genes or larger genomic regions. Abnormal patterns of methylation for DNA and H3K9 have been reported [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.