Abstract
The intricate and multifactorial nature of Alzheimer's disease (AD) requires the development of compounds able to hit different pathophysiological targets, such as cholinergic dysfunction, deposits of amyloid beta (Aβ) peptide and metal dyshomeostasis. In order to continue the search for new anti-AD drugs, a design strategy was once more followed based on repositioning donepezil (DNP) drug, by ortho-attaching a benzylpiperidine mimetic of DNP moiety to a hydroxyphenyl-benzimidazole (BIM) chelating unit (compound 1). Herein, compound 1 and a positional isomer 2 are compared in terms of their potential multiple properties: both present good acetylcholinesterase (AChE) inhibition (low μmolar range) and are moderate/good inhibitors of Aβ self- and Cu-mediated aggregation, the inhibition process being mainly due to ligand intercalation between the β-sheets of the fibrils; compound 1 has a higher chelating capacity towards Cu2+ and Zn2+ (pCu = 14.3, pZn = 6.4, pH 7.4, CL/CM = 10, CM = 10−6 M) than 2 (pCu = 10.7, pZn = 6.3), attributed to its ability to establish a tridentate (N,O,O) coordination to the metal ion. Both compounds are eligible as drug candidates for oral administration but compound 1 shows improved neuroprotective role by completely preventing Aβ-induced cell toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.