Abstract

In a multihop wireless network, each node has a transmission radius and is able to send a message to all of its neighbors that are located within the radius. In a broadcasting task, a source node sends the same message to all the nodes in the network. In this paper, we propose to significantly reduce or eliminate the communication overhead of a broadcasting task by applying the concept of localized dominating sets. Their maintenance does not require any communication overhead in addition to maintaining positions of neighboring nodes. Retransmissions by only internal nodes in a dominating set is sufficient for reliable broadcasting. Existing dominating sets are improved by using node degrees instead of their ids as primary keys. We also propose to eliminate neighbors that already received the message and rebroadcast only if the list of neighbors that might need the message is nonempty. A retransmission after negative acknowledgements scheme is also described. The important features of the proposed algorithms are their reliability (reaching all nodes in the absence of message collisions), significant rebroadcast savings, and their localized and parameterless behavior. The reduction in communication overhead for the broadcasting task is measured experimentally. Dominating set based broadcasting, enhanced by a neighbor elimination scheme and highest degree key, provides reliable broadcast with /spl les/53 percent of node retransmissions (on random unit graphs with 100 nodes) for all average degrees d. Critical d is around 4, with <48 percent for /spl les/3, /spl les/40 percent for d/spl ges/10, and /spl les/20 percent for d/spl ges/25. The proposed methods are better than existing ones in all considered aspects: reliability, rebroadcast savings, and maintenance communication overhead. In particular, the cluster structure is inefficient for broadcasting because of considerable communication overhead for maintaining the structure and is also inferior in terms of rebroadcast savings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.