Abstract
Clustering is an important approach in image segmentation. While various clustering algorithms have been proposed, the majority of them require one or more parameters as input, making them a little inflexible in practical applications. In order to solve the parameter dependent problem, in this paper we present a parameter-free clustering algorithm based on the dominant sets. We firstly study the influence of regularization parameters on the dominant sets clustering results. As a result, we select an appropriate regularization parameter to generate over-segmentation in clustering results. In the next step we merge clusters based on the relationship between intra-cluster and inter-cluster similarities. While being simple, our algorithm is shown to improve the clustering quality significantly in comparison with the dominant sets algorithm in data clustering and image segmentation experiments. It also performs comparably to or better than some other clustering algorithms with manually selected parameters input.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.