Abstract

As the frequency of functional signals and interfering fields is rising beyond 1 GHz, the immunity of integrated circuits (ICs) against these higher frequencies is interesting. To design test setups that mimic the real-world interference an IC may receive, the dominant coupling mechanism (radiation or conduction) needs to be known. We hypothesize that the dominant coupling mechanism is conduction for small outline integrated circuit (SOIC) packages up to about 10 GHz. To challenge this hypothesis, the radiated immunity of a printed circuit board trace connected to a voltage regulator IC is predicted and measured. The radiated immunity is predicted to be the product of the field-to-trace attenuation and the conducted immunity of the IC, thus neglecting the radiated immunity of the IC. As far as could be measured, the prediction correlated well with measurement, so the dominant-conduction hypothesis was not falsified with this case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.