Abstract

An enigmatic uncultured member of Firmicutes, Candidatus Desulforudis audaxviator (CDA), is known by its genome retrieved from the deep gold mine in South Africa, where it formed a single-species ecosystem fuelled by hydrogen from water radiolysis. It was believed that in situ conditions CDA relied on scarce energy supply and did not divide for hundreds to thousand years. We have isolated CDA strain BYF from a 2-km-deep aquifer in Western Siberia and obtained a laboratory culture growing with a doubling time of 28.5 h. BYF uses not only H2 but also various organic electron donors for sulfate respiration. Growth required elemental iron, and ferrous iron did not substitute for it. A complex intracellular organization included gas vesicles, internal membranes, and electron-dense structures enriched in phosphorus, iron, and calcium. Genome comparison of BYF with the South African CDA revealed minimal differences mostly related to mobile elements and prophage insertions. Two genomes harbored <800 single-nucleotide polymorphisms and had nearly identical CRISPR loci. We suggest that spores with the gas vesicles may facilitate global distribution of CDA followed by colonization of suitable subsurface environments. Alternatively, a slow evolution rate in the deep subsurface could result in high genetic similarity of CDA populations at two sites spatially separated for hundreds of millions of years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.