Abstract

An investigation of the orientation and temperature dependence of domain wall properties in FePt is presented. We use a microscopic, atomic model for the magnetic interactions within an effective, classical spin Hamiltonian constructed on the basis of spin density functional theory. We find a significant dependence of the domain wall width and the domain wall energy on the orientation of the wall with respect to the crystal lattice. Investigating the temperature dependence, we demonstrate the existence of elliptical as well as linear domain walls in FePt. The calculation and further analysis of the domain wall free energy results in the evaluation of a thermodynamic exchange stiffness and anisotropy constant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.