Abstract
This paper addresses the challenge of automated numeric domain model acquisition from observations. Many industrial and commercial applications of planning technology rely on numeric planning models. For example, in the area of autonomous systems and robotics, an autonomous robot often has to reason about its position in space, power levels and storage capacities. It is essential for these models to be easy to construct. Ideally, they should be automatically constructed. Learning the structure of planning domains from observations of action traces has produced successful results in classical planning. In this work, we present the first results in generalising approaches from classical planning to numeric planning. We restrict the numeric domains to those that include fixed action costs. Taking the finite state automata generated by the LOCM family of algorithms, we learn costs associated with machines; specifically to the object transitions and the state parameters. We learn action costs from action traces (with only the final cost of the plans as extra information) using a constraint programming approach. We demonstrate the effectiveness of this approach on standard benchmarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Automated Planning and Scheduling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.