Abstract

A primordial environment that hosted complex pre- or proto-biochemical activity would have been subject to random fluctuations. A relevant question is then: What might be the optimum variance of such fluctuations, such that net progress could be made towards a living system? Since lipid-based membrane encapsulation was undoubtedly a key step in chemical evolution, we used a peptide-micelle system in simulated experiments where simple micelles and peptide-stabilized micelles compete for the same amphiphilic lipid substrate. As cyclic thermal driver and energy source we used a thermochemical redox oscillator, to which the micelle reactions are coupled thermally through the activation energies. The long-time series averages taken for increasing values of the fluctuation variance show two distinct minima for simple micelles, but are smoothly increasing for complex micelles. This result suggests that the fluctuation variance is an important parameter in developing and perpetuating complexity. We hypothesize that such an environment may be self-selecting for a complex, evolving chemical system to outcompete simple or parasitic molecular structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.