Abstract

Rich, informative and realistic haptic feedback is key to enhancing Virtual Reality (VR) manipulation. Tangible objects provide convincing grasping and manipulation interactions with haptic feedback of e.g., shape, mass and texture properties. But these properties are static, and cannot respond to interactions in the virtual environment. On the other hand, vibrotactile feedback provides the opportunity for delivering dynamic cues rendering many different contact properties, such as impacts, object vibrations or textures. Handheld objects or controllers in VR are usually restricted to vibrating in a monolithic fashion. In this article, we investigate how spatialiazing vibrotactile cues within handheld tangibles could enable a wider range of sensations and interactions. We conduct a set of perception studies, investigating the extent to which spatialization of vibrotactile feedback within tangible objects is possible as well as the benefits of proposed rendering schemes leveraging multiple actuators in VR. Results show that vibrotactile cues from localized actuators can be discriminated and are beneficial for certain rendering schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.