Abstract

ABSTRACTSix green roof substrate blends were created by using composts sourced from local suppliers and the Michigan State University Student Organic Farm. Bulk density, field capacity, total porosity, and saturated hydraulic conductivity were determined for each substrate and compared to an un-amended expanded shale aggregate. Significant differences were detected in all measured physical properties. A plant growth study was conducted in a greenhouse. Ocimum basilicum (basil), Sedum floriforum (sedum), and Carex eburnea (bristleleaf sedge) were grown in a depth of 10 cm of all six substrates for 6 months. The greatest dry shoot masses in bristleleaf sedge and sedum were twice those of the smallest masses. The largest wet harvest of basil was four times greater than the smallest harvest. Runoff water was collected after simulated precipitation events on regular intervals during the plant growth study and analyzed for nitrate and phosphate concentrations. Ion concentrations were greatest on the first measurement date and decreased rapidly with time. Compost selection had a strong impact on initial nitrate and phosphate concentrations, but the influence of compost on concentrations diminished with time. Overall, compost selection was found to have measureable and meaningful impacts on green roof substrate performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.