Abstract

An in vitro cadaveric study. To determine whether percutaneous vertebroplasty (PVP) with a clinically relevant amount of bone cement is capable of causing stress peaks in adjacent-level vertebrae. It is often suggested that PVP of a primary spinal fracture causes stress peaks in adjacent vertebrae, thereby leading to additional fractures. The in vitro studies that demonstrated this relationship, however, use bigger volumes of bone cement used clinically. Ten fresh-frozen vertebrae were loaded until failure, while registering force and displacement as well as the pressure under the lower endplate. After failure, the vertebrae were augmented with clinically relevant amounts of bone cement and then again loaded until failure. The force, displacement, and pressure under the lower endplate were again registered. Stress peaks were not related to the location of the injected bone cement. Both failure load and stiffness were significantly lower after augmentation. On the basis of our findings, we conclude that vertebral augmentation with clinically relevant amounts of bone cement does not lead to stress peaks under the endplate. It is therefore unlikely that PVP, in itself, causes detrimental stresses in the adjacent vertebrae, leading to new vertebral fractures. N/A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.