Abstract
Statement of problemInformation concerning the effect of airborne-particle abrasion before zirconia sintering on its strength after aging is lacking. PurposeThe purpose of this in vitro study was to determine the influence of airborne-particle abrasion moment (before or after zirconia sintering), particle size, and aging on the mechanical strength of a yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic. Material and methodsFour hundred presintered zirconia disks were allocated to nonabraded (control) and abraded groups with 50 μm or 120 μm Al2O3 particles before (50/BS or 120/BS) or after sintering (50/AS or 120/AS). The disks were aged by storing them in distilled water for 24 hours at 37 °C (24 h) (control); mechanical cycling (MC) (1×106 cycles; 2 Hz; 100 N); hydrothermal aging (HA) (134 °C; 0.2 MPa; 20 hours); or by both methods (MC+HA), totaling 20 groups (n=20). The specimens were subjected to biaxial flexural strength (BFS) testing. Fractographic analysis was performed to identify the fracture origin. Tetragonal to monoclinic transformation was determined by X-ray diffraction. The BFS data (MPa) were analyzed by 2-way ANOVA and the Games-Howell post hoc test (α=.05). Weibull statistics was also applied. ResultsThe BFS and characteristic strength (σ0) of the 120/AS groups were significantly higher compared with the other abraded groups and statistically similar or higher compared with the respective nonabraded groups. In contrast, the 120/BS/24 h and all the 50/BS groups presented the lowest values. In all groups, the initial defect had its origin on the tensile stress side. Neither airborne-particle abrasion nor aging (except for the 50/AS/MC+HA) reduced the zirconia reliability compared with the respective controls. Abrading the zirconia in its presintered stage or after sintering increased the monoclinic phase content, and the sintering process eliminated this phase. ConclusionsAirborne-particle abrasion before zirconia sintering yields an inferior performance compared with that after sintering under aging challenges. The BFS and σ0 were strongly determined by the particle size and airborne-particle abrasion moment, while aging mainly acted in the nonabraded zirconia or when this material was abraded before sintering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.