Abstract

The aim of this work was to evaluate the contributions of the main chromophores to the total UV absorbance of the spent dialysate and to assess removal dynamics of these solutes during optical on-line dialysis dose monitoring. High performance chromatography was used to separate and quantify UV-absorbing solutes in the spent dialysate sampled at the start and at the end of dialysis sessions. Chromatograms were monitored at 210, 254 and 280 nm routinely and full absorption spectra were registered between 200 and 400 nm. Nearly 95% of UV absorbance originates from solutes with high removal ratio, such as uric acid. The contributions of different solute groups vary at different wavelengths and there are dynamical changes in contributions during the single dialysis session. However, large standard deviation of the average contribution values within a series of sessions indicates remarkable differences between individual treatments. A noteworthy contribution of Paracetamol and its metabolites to the total UV absorbance was determined at all three wavelengths. Contribution of slowly dialyzed uremic solutes, such as indoxyl sulfate, was negligible.

Highlights

  • The search for an easy and robust method for online tracking of a prescribed dialysis dose when dialysis is used as a treatment for patients with kidney failure is a long-term pursuit

  • The group of “All Other Solutes” (AOS) consists of the peaks that had no prevalent signal in the chromatograms or were not clearly identified as separate peaks

  • The results indicate that: (i) a predominant part (>95%) of the UV absorbance signal in the spent dialysate originates from dialyzed uremic solutes with a high removal ratio, like uric acid; (ii) a noteworthy role of Paracetamol and its metabolites in the UV absorbance signal was determined at all three wavelengths; (iii) the contribution of Uric acid (UA) changes during the dialysis treatment due to more efficient removal of small water soluble solutes, resulting in an increased contribution in other molecules; (iv) UV absorbance cannot be utilized to monitor the removal of slowly dialyzed uremic solutes; (v) an alternative grouping for uremic solutes based on removal ratios is proposed; (vi) a significant part of UV absorbance is caused by unidentified molecules

Read more

Summary

Introduction

The search for an easy and robust method for online tracking of a prescribed dialysis dose when dialysis is used as a treatment for patients with kidney failure is a long-term pursuit. Blood samples have been the main source of information concerning the efficiency of dialysis treatment during the history of search for a suitable parameter for dialysis dose description. The Kt/V value based on urea analyses in blood samples has been commonly accepted for the description of a delivered dialysis dose today. Urea itself does not exhibit toxic properties in concentrations found in the dialysis patients [2], and is not representative for removal of many uremic toxins regarded as groups of protein bound and middle molecules [3].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.