Abstract
Abstract Main-sequence low-mass stars are known to spin down as a consequence of their magnetized stellar winds. However, estimating the precise rate of this spin-down is an open problem. The mass-loss rate, angular momentum loss rate, and magnetic field properties of low-mass stars are fundamentally linked, making this a challenging task. Of particular interest is the stellar magnetic field geometry. In this work, we consider whether non-dipolar field modes contribute significantly to the spin-down of low-mass stars. We do this using a sample of stars that have all been previously mapped with Zeeman–Doppler imaging. For a given star, as long as its mass-loss rate is below some critical mass-loss rate, only the dipolar fields contribute to its spin-down torque. However, if it has a larger mass-loss rate, higher-order modes need to be considered. For each star, we calculate this critical mass-loss rate, which is a simple function of the field geometry. Additionally, we use two methods of estimating mass-loss rates for our sample of stars. In the majority of cases, we find that the estimated mass-loss rates do not exceed the critical mass-loss rate; hence, the dipolar magnetic field alone is sufficient to determine the spin-down torque. However, we find some evidence that, at large Rossby numbers, non-dipolar modes may start to contribute.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.