Abstract

The problem of whether interactions between the hydrogen atoms at the 1,10-positions in the "cleft" of the "bent" phenanthrene stabilize the latter molecule thermodynamically relative to "linear" anthracene, or whether the higher stability of phenanthrene is due to a more energetically favorable π-system, is considered. DFT calculations at the X3LYP/cc-pVTZ(-f)++ level of the ground state energies (E) of anthracene, phenanthrene, and the set of five benzoquinolines are reported. In the gas phase, "bent" phenanthrene was computed to be thermodynamically more stable than "linear" anthracene by -28.5 kJ mol(-1). This fact was attributed predominantly to the phenomenon of higher aromatic stabilization of the π-system of phenanthrene relative to anthracene, and not to the stabilizing influence of the nonbonding H--H interactions in its cleft. In fact, these interactions in phenanthrene were shown to be destabilizing. Similar calculations for five benzoquinolines (bzq) indicate that ΔE values vary as: 6,7-bzq (linear) ≤ 2,3-bzq (linear) < 5,6-bzq (bent) ≤ 3,4-bzq (bent) < 7,8-bzq (bent, no H--H nonbonding interactions in cleft), supporting the idea that it is a more stable π-system that favors 7,8-bzq over 2,3-bzq and 6,7-bzq, and that the H--H interactions in the clefts of 3,4-bzq and 5,6-bzq are destabilizing. Intramolecular hydrogen bonding in the cleft of 7,8-bzq plays a secondary role in its stabilization relative 6,7-bzq. The question of whether H--H nonbonded interactions between H atoms at the 3 and 3' positions of 2,2'-bipyridyl (bpy) coordinated to metal ions are stabilizing or destabilizing is then considered. The energy of bpy is scanned as a function of N-C-C-N torsion angle (χ) in the gas-phase, and it is found that the trans form is 32.8 kJ mol(-1) more stable than the cis conformer. A relaxed coordinate scan of energy of bpy in aqueous solution as a function of χ is modeled using the PBF approach, and it is found that the trans conformer is still more stable than the cis, but now only by 5.34 kJ mol(-1). The effect that the latter energy has on the thermodynamic stability of complexes of metal ions with bpy in aqueous solution is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.