Abstract

This study investigates a path following problem of underactuated autonomous underwater vehicle under multiple uncertainties in three-dimensional space. The uncertainties are partly induced by hydrodynamic coefficient uncertainty, ocean currents and unmodeled hydrodynamics, namely dynamic uncertainties. In addition, velocities are assumed to be measured with bounded noise, which is called velocity measurement uncertainties. To address this issue, a compound robust path following control strategy is developed. At the kinematic level, an improved kinematic controller is developed by utilizing disturbance observer to recover the unknown time-varying attack and side-slip angular velocity. At the dynamic level, a novel dynamic tracking model is firstly established via linear parameter varying (LPV) technique, by which multiple uncertainties are expressed in a comprehensive way. Subsequently, a robust LPV controller is employed to track desired velocities generated by kinematic controller, which has less dependence on accurate model and exact velocity measurement. Finally, rigorous stability analysis proves the uniform and ultimate boundedness of path following errors. The comparative numerical results also substantiate the efficacy and superiority of designed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.