Abstract
Abstract The Leeuwin Current is a poleward-flowing eastern boundary current off the western Australian coast, and alongshore momentum balance in the current has been hypothesized to comprise a southward pressure gradient force balanced by northward wind and bottom stresses. This alongshore momentum balance is revisited using a high-resolution upper-ocean climatology to determine the alongshore pressure gradient and altimeter and mooring observations to derive an eddy-induced Reynolds stress. Results show that north of the Abrolhos Islands (situated near the shelf break between 28.2° and 29.3°S), the alongshore momentum balance is between the pressure gradient and wind stress. South of the Abrolhos Islands, the Leeuwin Current is highly unstable and strong eddy kinetic energy is observed offshore of the current axis. The alongshore momentum balance on the offshore side of the current reveals an increased alongshore pressure gradient, weakened alongshore wind stress, and a significant Reynolds stress exerted by mesoscale eddies. The eddy Reynolds stress has a −0.5 Sv (Sv ≡ 106 m3 s−1) correction to the Indonesian Throughflow transport estimate from Godfrey’s island rule. The mesoscale eddies draw energy from the mean current through mixed barotropic and baroclinic instability, and the pressure gradient work overcomes the negative wind work to supply energy for the instability process. Hence the anomalous large-scale pressure gradient in the eastern Indian Ocean drives the strongest eddy kinetic energy level among all the midlatitude eastern boundary currents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.