Abstract

The symbiotic association between corals and zooxanthellae has been a major contributing factor in the success of reef-building corals. Most of these endocellular microalgal symbionts belong to the dinoflagellate genus Symbiodinium. However, considerable genetic diversity was revealed within this taxon, as is evident in the several clades of Symbiodinium found in association with hermatypic corals all over the world. The coral reefs of Eilat (Aqaba), where winter temperature minima of 21 °C are close to threshold values that prevent reef development, are among the northernmost reefs in the world. Furthermore, due to the circulation patterns of the Gulf, the extremely high evaporation, and lack of any riverine inputs, the Gulf's waters are highly saline (40.5‰). In spite of the extreme location, a high diversity of coral species has been reported in this area. In this study, using PCR, we specifically amplified zooxanthellae 18S ribosomal DNA from symbionts of 11 coral species, and analyzed it with respect to RFLP and DNA sequence. Of the several clades described from the same coral hosts in other localities, only A and C were found in the present study. Symbiodinium populations in the host examined from Eilat were different relative to other parts of the world. This distribution is discussed in relation to reproduction strategy: broadcasting versus brooding. Based on our results, we suggest that clade A is transferred through a closed system. As mass bleaching in the Gulf has never been observed, we suggest that the adaptive mechanisms presumably favoring clade diversity were not yet significant in our relatively cool area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.