Abstract

Genomic imprinting is regulated by differential methylation of the paternal and maternal genome. However, it remains unknown how parental imprinting is established during gametogenesis. In this study, we demonstrate that Dnmt3L, a protein sharing homology with DNA methyltransferases, Dnmt3a and Dnmt3b, but lacking enzymatic activity, is essential for the establishment of maternal methylation imprints and appropriate expression of maternally imprinted genes. We also show that Dnmt3L interacts with Dnmt3a and Dnmt3b and co-localizes with these enzymes in the nuclei of transfected cells, suggesting that Dnmt3L may regulate genomic imprinting via the Dnmt3 family enzymes. Consistent with this model, we show that [Dnmt3a(-/-), Dnmt3b(+/-)] mice also fail to establish maternal methylation imprints. In addition, both Dnmt3a and Dnmt3L are required for spermatogenesis. Together, our findings suggest that Dnmt3L may cooperate with Dnmt3 family methyltransferases to carry out de novo methylation of maternally imprinted genes in oocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.