Abstract

Biomarker discovery is essential for the understanding, diagnosis, targeted therapy and prognosis assessment of malignant diseases. However, it remains a huge challenge due to the lack of sensitive methods to identify disease-specific rare molecules. Here we present MORAC, molecular recognition based on affinity and catalysis, which enables the effective identification of candidate biomarkers with low abundance. MORAC relies on a class of DNAzymes, each cleaving a sole RNA linkage embedded in their DNA chain upon specifically sensing a complex system with no prior knowledge of the system's molecular content. We show that signal amplification from catalysis ensures the DNAzymes high sensitivity (for target probing); meanwhile, a simple RNA-to-DNA mutation can shut down their RNA cleavage ability and turn them into a pure affinity tool (for target pulldown). Using MORAC, we identify previously unknown, low-abundance candidate biomarkers with clear clinical value, including apolipoprotein L6 in breast cancer and seryl-tRNA synthetase 1 in polyps preceding colon cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.