Abstract

A DNA walker as a new molecular machine can walk on defined tracks to directly generate signal indicators in biosensing and biomedical applications. In this work, a tandem signal amplification strategy was developed on the basis of the DNA-walker-induced conformation switch for bridging palladium nanoparticles/metal-organic framework tags in ultrasensitive electrochemical DNA biosensing. The signal tags were synthesized by in situ reduction of Pd nanocrystals on porphyrinic metal-organic frameworks (PCN-224), followed by conjugation with streptavidin (SA). The as-prepared Pd/PCN-224-SA tag could electrocatalyze the oxidation of NaBH4 with high efficiency for signal readout. The presence of target DNA released swing arms that were each silenced by a blocker, and then the activated swing arms could hybridize with hairpin DNA. The movement of swing arms was powered by enzymatic cleavage of conjugated oligonucleotides, inducing the allosteric switch from hairpin to SA aptamer. Therefore, Pd/PCN-224-SA tags were brought onto the electrode surface via SA-aptamer biorecognition to generate the enhanced electrochemical signal. The DNA walker-based electrochemical biosensor demonstrated good performance such as 6 orders of magnitude linear range, femtomolar detection limit, and single mismatch differentiation ability. Moreover, the feasibility of the biosensor was identified in serum matrixes. The tandem signal amplification of metal-organic frameworks and DNA walkers provided a new avenue in trace electrochemical biosensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.