Abstract

Naked DNA vaccines have a number of advantages over conventional vaccines, but induce only weak immune responses. We have here investigated if this inadequacy may be overcome by inducing muscle to secrete fusion proteins with the ability to target antigen-presenting cells (APC). The novel targeted vaccines are homodimers with (i) two identical single-chain fragment variable (scFv) targeting units specific for MHC class II molecules on mouse APC, (ii) a human Ig hinge and CH3 dimerization unit, and (iii) two identical scFv tumor antigenic units (idiotypes) from B cell cancers. After plasmid injection and electroporation of mouse muscle, secreted vaccine proteins (vaccibodies) delivered idiotypic tumor antigen to APC in draining lymph nodes for induction of T and B cell responses that protected mice against tumor challenges with a multiple myeloma (MOPC315) and a B cell lymphoma (A20). Targeting to APC was essential for these effects. The results show that immunogenicity of plasmid DNA vaccines can be increased by inducing muscle to secrete proteins that target antigen to APC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.