Abstract
Antisense oligonucleotides are considered to be a promising strategy for cancer therapy because of their high specificity and minimal side effects. They can bind specifically to mRNA silencing the expression of target genes. However, ssDNA cannot enter cells in large quantities, which limits its applications. Tetrahedral framework nucleic acids (tFNA) are considered to be optimal nanoscopic drug carriers because of their editability and biocompatibility. Most importantly, they can be modified with functional molecules. The over-expression of c-Met is associated with a wide variety of tumor occurrences, developments, drug resistance and prognoses. Activation of HGF/c-Met signaling pathways can promote cell migration and invasion in cancer. Therefore, blocking the expression of c-Met is a valid technique for cancer therapy. In this study, we used tFNA as carriers to deliver antisense oligonucleotides, which can bind to c-Met mRNA with high specificity and affinity, into cells resulting in the inhibition of c-Met expression for cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.