Abstract

Investigators have constructed dsDNA molecules with several different base modifications and have characterized their bending and twisting flexibilities using atomic force microscopy, DNA ring closure, and single-molecule force spectroscopy with optical tweezers. The three methods provide persistence length measurements that agree semiquantitatively, and they show that the persistence length is surprisingly similar for all of the modified DNAs. The circular dichroism spectra of modified DNAs differ substantially. Simple explanations based on base stacking strength, polymer charge, or groove occupancy by functional groups cannot explain the results, which will guide further high-resolution theory and experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.