Abstract

Very different neurocognitive processes appear to be involved in cognitive abilities such as verbal and non-verbal ability as compared to learning abilities taught in schools such as reading and mathematics. However, twin studies that compare similarity for monozygotic and dizygotic twins suggest that the same genes are largely responsible for genetic influence on these diverse aspects of cognitive function. It is now possible to test this evidence for strong pleiotropy using DNA alone from samples of unrelated individuals. Here we used this new method with 1.7 million DNA markers for a sample of 2,500 unrelated children at age 12 to investigate for the first time the extent of pleiotropy between general cognitive ability (aka intelligence) and learning abilities (reading, mathematics and language skills). We also compared these DNA results to results from twin analyses using the same sample and measures. The DNA-based method revealed strong genome-wide pleiotropy: Genetic correlations were greater than 0.70 between general cognitive ability and language, reading, and mathematics, results that were highly similar to twin study estimates of genetic correlations. These results indicate that genes related to diverse neurocognitive processes have general rather than specific effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.