Abstract
Purpose: Variation in sensitivity to radiotherapy among tumors has been related to the capacity of cells to repair radiation-induced DNA double-strand breaks (DSBs). DNA-dependent protein kinase (DNA-PK) and DNA ligases may affect DNA dsb rejoining. This study was performed to compare rate of rejoining of radiation-induced DSBs, DNA-PK, and DNA ligase activities in two human squamous carcinoma cell lines with different sensitivity to ionizing radiation. Methods and Materials: Cell survival of two human squamous carcinoma cell lines, UM-SCC-1 and UM-SCC-14A, was determined by an in vitro clonogenic assay. DSB rejoining was studied using pulsed field gel electrophoresis (PFGE). DNA-PK activity was determined using BIOTRAK DNA-PK enzyme assay system (Amersham). DNA ligase activity in crude cell extracts was measured using [5′- 33P] Poly (dA)·(oligo (dT) as a substrate. Proteolytic degradation of proteins was analyzed by means of Western blotting. Results: Applying the commonly used linear-quadratic equation to describe cell survival, S = e -α D-β D 2 , the two cell lines roughly have the same α value (∼0.40 Gy -1) whereas the β value was considerably higher in UM-SCC-14A (0.067 Gy -2 ± 0.007 Gy -2 [SEM]) as compared to UM-SCC-1 (0.013 Gy -2 ± 0.004 Gy -2 [SEM]). Furthermore, UM-SCC-1 was more proficient in rejoining of X-ray-induced DSBs as compared to UM-SCC-14A as quantified by PFGE. The constitutive level of DNA-PK activity was 1.6 times higher in UM-SCC-1 as compared to UM-SCC-14A ( p < 0.05). The constitutive level of DNA ligase activity was similar in the two cell lines. Conclusions: The results suggest that the proficiency in rejoining of DSBs is associated with DNA-PK activity but not with total DNA ligase activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Radiation Oncology, Biology, Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.