Abstract

DNA-templated reversible assembly of an enzyme-inhibitor complex is presented as a new and highly modular approach to control enzyme activity. TEM1-β-lactamase and its inhibitor protein BLIP were conjugated to different oligonucleotides, resulting in enzyme inhibition in the presence of template strand. Formation of a rigid dsDNA linker upon addition of a complementary target strand disrupts the enzyme-inhibitor complex and results in the restoration of enzyme activity, enabling detection of as little as 2 fmol DNA. The noncovalent assembly of the complex allows easy tuning of target and template strands without changing the oligonucleotide-functionalized enzyme and inhibitor domains. Using a panel of eight different template sequences, restoration of enzyme activity was only observed in the presence of the target viral DNA sequence. The use of stable, well-characterized protein domains and the intrinsic modularity of our system should allow easy integration with DNA/RNA-based logic circuits for applications in biomedicine and molecular diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.