Abstract

Reactive nitrogen and oxygen species are produced in cells and play an important role in the oxidative metabolism; when in abnormal concentrations, they are able to induce oxidative damage on biomolecules, namely in DNA. In this paper it is described, an electrochemical DNA-based sensor against NO radical developed for total antioxidant capacity (TAC) evaluation. The sensor consisted on dA20 (adenine-rich oligonucleotide) physically adsorbed into carbon paste electrode (CPE). When this dA20-CPE was damaged, by immersion in a freshly generated NO radical, a protective effect onto dA20 was observed in the presence of antioxidants (ascorbic, gallic, caffeic, p-coumaric acids). Electrochemical studies were performed through square wave voltammetry. The construction of the sensor is simple, fast and the results indicated that the DNA-based sensor is suitable, accurate, and can be used to the assessment of TAC in commercial samples of juices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.