Abstract

Hepatitis delta virus (HDV) superinfection is one of the major causes of fulminant hepatitis in endemic areas of hepatitis B virus (HBV) infection. Currently, there is no effective treatment or vaccine against HDV superinfection. DNA-based immunization is a promising antiviral strategy to prevent or treat persistent viral infections. In this study, we investigated the immunological effects of DNA vaccines against HDV in BALB/c mice. Plasmid (pD) encoding large hepatitis D antigen (L-HDAg), or plasmid (pS/pD) coexpressing hepatitis B surface antigen (HBsAg) and L-HDAg, were injected into mice intramuscularly. The seroconversion rate, anti-HBs levels, anti-HDV titers, T-cell proliferation responses, and T-helper (Th)-release cytokine profiles were analyzed. Mice immunized with plasmids, pS/pD or pD, produced low, but significant, titers of anti-HDV antibodies. In contrast, pS/pD induced much stronger anti-HBs titers in the immunized animals. Interestingly, splenic lymphocytes derived from pS/pD-inoculated mice demonstrated significant proliferation responses to recombinant HBsAg and HDAg, and resulted in a Th1-like immune response as suggested by the production of interferon gamma (INF-gamma) and interleukin-2 (IL-2), but not IL-4. The splenic lymphocyte derived from the pD-inoculated mice showed a similar Th1 response to the stimulation of HDAg, but not to HBsAg. In conclusion, our results suggest that DNA vaccines against HDV can induce significant cellular immune responses with a Th1 preference. HBV and HDV coimmunization can be performed by DNA vaccines. These results are promising for the future development of prophylactic and therapeutic HDV vaccines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.