Abstract

Environmental contaminants pose a substantial health risk in many areas of the world. One of these risks is contamination of water with toxic organic species, such as herbicides and insecticides. Here we describe the discovery and properties of a set of fluorescent chemosensors that respond to micromolar concentrations of a broad range of common organic pesticides. The chemosensors are short DNA-like oligomers with fluorophores replacing DNA bases that are assembled via a DNA synthesizer. We screened a library of 1296 tetrameric compounds on polystyrene microbeads, and identified a set of chemosensor sequences that respond strongly to a set of structurally varied pesticide analytes. We show that ten chemosensors on beads can be used to detect and identify 14 different common pesticides at 100 μM, using the pattern of fluorescence intensity and wavelength changes. Limits of detection for two analytes were as low as 2 μM. The chemosensors are shown to function successfully in a practical setting, correctly identifying unknown pesticide contaminants in water from Felt Lake, California. The results establish a simple, low cost strategy for sensing environmental spills of toxic organics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.