Abstract

A radiation tolerance strain, Pantoea agglomerans was isolated from γ-irradiated carrot samples ( Daucus carota). D 10 determination showed that the radioresistance of this bacterium is five-fold higher than Escherichia coli, both belonging to the family of Enterobacteriaceae. DNA isolated from untreated and irradiated bacterial cells was analyzed by FT-IR spectroscopy to investigate the radiotolerance of this bacterium. At doses <5 kGy, an alteration of the interbase hydrogen networks was observed and characterized mainly by an increase of bands assigned to the carbonyl non-pairing and the free amine groups. Moderate breakage of the DNA backbone and damage of the osidic structure were also observed. Similar spectral profiles were noticed at doses ≥5 kGy, but additional increase of the band intensity of C C and C N suggests damages of nucleobases. High number of asymmetric PO 2 − and upper shift of symmetric PO 2 − are indicative of DNA strand breaks. Osidic damages were evidenced by decrease of the absorption bands ascribed to deoxyribosyl moieties and by appearance of C–OH band. DNA degradation at high irradiation doses was also noticed by electrophoresis using agarose gel. It appeared that DNA underwent covalent cross-linking, as revealed by agglomeration of DNA in the wells of agarose gel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.