Briefings in Bioinformatics | VOL. 23

DLF-Sul: a multi-module deep learning framework for prediction of S-sulfinylation sites in proteins

Publication Date Aug 9, 2022


Abstract Protein S-sulfinylation is an important posttranslational modification that regulates a variety of cell and protein functions. This modification has been linked to signal transduction, redox homeostasis and neuronal transmission in studies. Therefore, identification of S-sulfinylation sites is crucial to understanding its structure and function, which is critical in cell biology and human diseases. In this study, we propose a multi-module deep learning framework named DLF-Sul for identification of S-sulfinylation sites in proteins. First, three types of features are extracted including binary encoding, BLOSUM62 and amino acid index. Then, sequential features are further extracted based on these three types of features using bidirectional long short-term memory network. Next, multi-head self-attention mechanism is utilized to filter the effective attribute information, and residual connection helps to reduce information loss. Furthermore, convolutional neural network is employed to extract local deep features information. Finally, fully connected layers acts as classifier that map samples to corresponding label. Performance metrics on independent test set, including sensitivity, specificity, accuracy, Matthews correlation coefficient and area under curve, reach 91.80%, 92.36%, 92.08%, 0.8416 and 96.40%, respectively. The results show that DLF-Sul is an effective tool for predicting S-sulfinylation sites. The source code is available on the website


Multi-head Self-attention Mechanism Types Of Features Matthews Correlation Coefficient Amino Acid Index Independent Test Set Short-term Memory Network Residual Connection Identification Of Sites Convolutional Neural Network Sequential Features

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.