Abstract

In this paper, we develop a method to efficiently estimate dynamic discrete choice models with AR(n) type serial correlation of the errors. First, to approximate the expected value function of the underlying dynamic problem, we use Gaussian quadrature, interpolation over an adaptively refined grid, and solve a potentially large non-linear system of equations. Second, to evaluate the likelihood function, we decompose the integral over the unobserved state variables in the likelihood function into a series of lower dimensional integrals, and successively approximate them using Gaussian quadrature rules. Finally, we solve the maximum likelihood problem using a nested fixed point algorithm. We then apply this method to obtain point estimates of the parameters of the bus engine replacement model of Rust [Econometrica, 55 (5): 999–1033, (1987)]: First, we verify the algorithm's ability to recover the parameters of an artificial data set, and second, we estimate the model using the original data, finding significant serial correlation for some sub-samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.