Abstract

The mild reaction conditions of the palladium-copper coupling-isomerization reaction open a highly convergent, chromogenic route to blue emissive pyrroles in the sense of a consecutive four-component reaction. By virtue of this strategy a phenol derivative can be readily accessed, which can be transformed in a level-2 transformation to a library of bichromophoric pyrrol-fluorophore conjugates by facile alkylation with fluorophore halides. The photophysics of the underlying blue emitter derivative and the conjugates is studied by absorption and emission spectroscopy, furnishing intramolecular energy transfer at short distances as well as competing fluorescence quenching. In some cases partial energy transfer results in the occurrence of dual emission, for instance seen as magenta-rose emission arising from blue and red orange luminescence. The experimental photophysical studies are rationalized by DFT and TD-DFT calculations.

Highlights

  • A interesting aspect of functional organic materials (Müller and Bunz, 2007) is based on inter- and intra-molecular interactions of chromophores, eventually, as multichromophore systems (Bazan, 2007)

  • Non-conjugatively ligated multichromophores will not interact in the electronic ground state, if rigidified orientations and intramolecular aggregation are excluded, but their interaction occurs after photonic excitation, i.e., in the electronically excited states

  • Upon excitation at the longest wavelength maximum a broad intense emission at 442 nm is found with a relative fluorescence quantum yield ΦF of 0.11, i.e., in a comparable magnitude as other benzonitrile substituted pyrroles (Braun and Müller, 2004)

Read more

Summary

Introduction

A interesting aspect of functional organic materials (Müller and Bunz, 2007) is based on inter- and intra-molecular interactions of chromophores, eventually, as multichromophore systems (Bazan, 2007). The 1H and 13C NMR and mass spectra (MALDI-TOF and HRMS) unambiguously confirm the successful ligation of the 1 with the second chromophores 3–7 as well as methyl iodide, and thereby the structures of pyrrole reference chromophore 2 and the bichromophores 8–12.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.