Abstract

In Gram-negative bacteria, quorum-sensing (QS) communication is mostly mediated by N-acyl homoserine lactones (N-AHSL). The diversity of bacterial populations that produce or inactivate the N-AHSL signal in soil and tobacco rhizosphere was investigated by restriction fragment length polymorphism (RFLP) analysis of amplified 16S DNA and DNA sequencing. Such analysis indicated the occurrence of N-AHSL-producing strains among the alpha-, beta- and gamma-proteobacteria, including genera known to produce N-AHSL (Rhizobium, Sinorhizobium and Pseudomonas) and novel genera with no previously identified N-AHSL-producing isolates (Variovorax, Sphingomonas and Massilia). The diversity of N-AHSL signals was also investigated in relation to the genetic diversity of the isolates. However, N-AHSL-degrading strains isolated from soil samples belonged to the Bacillus genus, while strains isolated from tobacco rhizospheres belonged to both the Bacillus genus and to the alpha subgroup of proteobacteria, suggesting that diversity of N-AHSL-degrading strains may be modulated by the presence of the tobacco plant. Among these rhizospheric isolates, novel N-AHSL-degrading genera have been identified (Sphingomonas and Bosea). As the first simultaneous analysis of both N-AHSL-degrading and -producing bacterial communities in a complex environment, this study revealed the coexistence of bacterial isolates, belonging to the same genus or species that may produce or degrade N-AHSL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.