Abstract

BackgroundThe concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons.Methodology/Principal FindingsUsing the 23S rRNA gene as an example, we analyzed the diversity among individual rRNA genes within a genome. Of 184 prokaryotic species containing multiple 23S rRNA genes, diversity was observed in 113 (61.4%) genomes (mean 0.40%, range 0.01%–4.04%). Significant (1.17%–4.04%) intragenomic variation was found in 8 species. In 5 of the 8 species, the diversity in the primary structure had only minimal effect on the secondary structure (stem versus loop transition). In the remaining 3 species, the diversity significantly altered local secondary structure, but the alteration appears minimized through complex rearrangement. Intervening sequences (IVS), ranging between 9 and 1471 nt in size, were found in 7 species. IVS in Deinococcus radiodurans and Nostoc sp. encode transposases. T. tengcongensis was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes.Conclusions/SignificanceThese findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy.

Highlights

  • IntroductionRibonucleoprotein machinery in which proteins are synthesized

  • Ribosomes are the large, ribonucleoprotein machinery in which proteins are synthesized

  • Our findings of 0.4% average diversity for intragenomic variation of rRNA sequences among the 113 diversified genomes is higher than the reported 0.17% diversity among 16S rRNA genes [26], but will be more similar to the 16S rRNA genes diversity (0.25%) if all 184 genomes are included in the calculation (Table S2)

Read more

Summary

Introduction

Ribonucleoprotein machinery in which proteins are synthesized. The structure of ribosomes is largely conserved amongst the three kingdoms of life. The ribosome is composed of two subunits: a large 50S subunit, and a small 30S subunit. The 50S subunit contains a 23S, a 5S rRNA, and more than 30 proteins. The 30S subunit contains a 16S rRNA plus 20 proteins. Precise spatial relationships may be essential for assembly of functional ribosomes, constraining ribosomal RNA genes from drastic change [1]. The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.