Abstract

With the continuous development of mobile edge computing and the improvement of unmanned vehicle technology, unmanned vehicle could handle ever-increasing demands. As a significant application of unmanned vehicle, spatial crowdsourcing will provide an important application scenario, which is about to organize a lot of unmanned vehicle to conduct the spatial tasks by physically moving to its locations, called task assignment. Previous works usually focus on assigning a spatial task to one single vehicle or a group of vehicles. Few of them consider that vehicle team diversity is essential to collaborative work. Collaborative work is benefits from organizing teams with various backgrounds vehicles. In this paper, we consider a spatial crowdsourcing scenario. Each vehicle has a set of skills and a property. The property denotes vehicle’s special attribute (e.g., size, speed or weight). We introduce a concept of entropy to measure vehicle team diversity. Each spatial task (e.g., delivering the take-out, and carrying freight) is under the time and budget constraint, and required a set of skills. We need to assure that the assigned vehicle team is diverse. To address this issue, we first propose a practical problem, called team diversity spatial crowdsourcing (TD-SC) problem which finds an optimal team-and-task assignment strategy. Moreover, we design a framework which includes a greedy with diversity (GD) algorithm and a divide-and-conquer (D&C) algorithm to get team-and-task assignments. Finally, we demonstrate efficiency and effectiveness of the proposed methods through extensive experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.