Abstract

Nineteen species of amphibians inhabit Romania, 9 of which reach their range limit on this territory. Based on published occurrence reports, museum collections and our own data we compiled a national database of amphibian occurrences. We georeferenced 26779 amphibian species occurrences, and performed an analysis of their spatial patterns, checking for hotspots and patterns of species richness. The results of spatial statistic analyses supported the idea of a biased sampling for Romania, with clear hotspots of increased sampling efforts. The sampling effort is biased towards species with high detectability, protected areas, and large cities. Future sampling efforts should be focused mostly on species with a high rarity score in order to accurately map their range. Our results are an important step in achieving the long-term goals of increasing the efficiency of conservation efforts and evaluating the species range shifts under climate change scenarios.

Highlights

  • Biodiversity studies have intensified after the Convention on Biological Diversity was signed at the 1992 World Summit in Rio de Janeiro

  • Basic knowledge of the species distributions within a region is required for a proper management of biodiversity, e.g., to predict species extinction under habitat loss, to understand the potential impacts of climate change on biodiversity, to prioritize conservation efforts and design conservation areas (Margules and Pressey 2000, Primack 2010)

  • Our database increased the average number of amphibian records per 100 km2 compared with GBIF dataset from 0.123 in the GBIF dataset to 11.2 in our database (Table 2)

Read more

Summary

Introduction

Biodiversity studies have intensified after the Convention on Biological Diversity was signed at the 1992 World Summit in Rio de Janeiro. Despite repeated attempts to halt biodiversity loss, the 2010 targets have not been met (Barbault 2011). The new Aichi Biodiversity Targets provide more detailed and focused targets for 2020, but achieving them requires detailed data and information on biodiversity. The increased amount of biodiversity data available is accompanied by progress in computation that allows the proper management of data (Matin et al 2012) and its advanced and precise analysis (Reese et al 2005). Basic knowledge of the species distributions within a region is required for a proper management of biodiversity, e.g., to predict species extinction under habitat loss, to understand the potential impacts of climate change on biodiversity, to prioritize conservation efforts and design conservation areas (Margules and Pressey 2000, Primack 2010)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.