Abstract
A point-to-point multiple-relay communication system with half-duplex constraints is considered. The relays operate under the amplify-and-forward paradigm and implement a linear dispersion distributed space-time code with randomized dispersion matrices of independent and identically distributed entries. The large-signal-to-noise-ratio behavior of the asymptotically large deterministic system is studied for both the optimum (maximum likelihood) receiver and the linear minimum mean squared error (LMMSE) receiver. The diversity order of the system is shown to have a strong dependence on the aspect ratio of the linear dispersion matrices. More specifically, when the linear dispersion matrices are sufficiently tall, both receivers achieve the maximum diversity order, i.e., the total number of relays plus one. Conversely, when the linear dispersion matrices are fat (in the sense that relays linearly compress the information received from the source), the optimum receiver is shown to achieve an asymptotic diversity order of two, whereas the LMMSE receiver is totally unable to exploit the available spatial diversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.