Abstract

BackgroundThe enzyme family Quiescin Sulfhydryl Oxidase (QSOX) is defined by the presence of an amino-terminal thioredoxin-fold (Trx) domain and a carboxy-terminal Erv family sulfhydryl oxidase domain. QSOX enzymes, which generate disulfide bonds and transfer them to substrate proteins, are present in a wide variety of eukaryotic species including metazoans and plants, but are absent from fungi. Plant and animal QSOXs differ in their active-site amino acid sequences and content of non-catalytic domains. The question arises, therefore, whether the Trx-Erv fusion has the same mechanistic significance in all QSOX enzymes, and whether shared features distinguish the functional domains of QSOX from other instances in which these domains occur independently. Through a study of QSOX phylogeny and an analysis of QSOX sequence diversity in light of recently determined three-dimensional structures, we sought insight into the origin and evolution of this multi-domain redox alliance.ResultsAn updated collection of QSOX enzymes was used to confirm and refine the differences in domain composition and active-site sequence motif patterns of QSOXs belonging to various eukaryotic phyla. Beyond the expected phylogenetic distinction of animal and plant QSOX enzymes, trees based on individual redox-active QSOX domains show a particular distinction of the Trx domain early in plant evolution. A comparison of QSOX domains with Trx and Erv domains from outside the QSOX family revealed several sequence and structural features that clearly differentiate QSOXs from other enzymes containing either of these domains. Notably, these features, present in QSOXs of various phyla, localize to the interface between the Trx and Erv domains observed in structures of QSOX that model interdomain redox communication.ConclusionsThe infrastructure for interdomain electron relay, previously identified for animal and parasite QSOXs, is found broadly across the QSOX family, including the plant enzymes. We conclude that the conserved three-dimensional framework of the QSOX catalytic domains accommodates lineage-specific differences and paralog diversification in the amino acid residues surrounding the redox-active cysteines. Our findings indicate that QSOX enzymes are characterized not just by the presence of the two defining domain folds but also by features that promote coordinated activity.

Highlights

  • The enzyme family Quiescin Sulfhydryl Oxidase (QSOX) is defined by the presence of an aminoterminal thioredoxin-fold (Trx) domain and a carboxy-terminal Erv family sulfhydryl oxidase domain

  • Motivated by increasing interest in the biology of this enzyme family and facilitated by the large number of sequences that have become available in recent years, we present an analysis of QSOX evolution, highlighting universal features vs. aspects of the enzyme family that may vary for adaptation to particular functional niches

  • Both QSOX and Protein Disulfide Isomerase (PDI) act as catalysts of disulfide bond formation, they differ in their cellular localization, domain composition, and electron acceptor

Read more

Summary

Introduction

The enzyme family Quiescin Sulfhydryl Oxidase (QSOX) is defined by the presence of an aminoterminal thioredoxin-fold (Trx) domain and a carboxy-terminal Erv family sulfhydryl oxidase domain. QSOX enzymes, which generate disulfide bonds and transfer them to substrate proteins, are present in a wide variety of eukaryotic species including metazoans and plants, but are absent from fungi. A study of QSOX phylogeny will complement the experimental identification of QSOX substrates to distinguish potential general roles for a post-ER disulfide formation pathway from functions into which the enzyme may have been co-opted on particular branches of the evolutionary tree. Motivated by increasing interest in the biology of this enzyme family and facilitated by the large number of sequences that have become available in recent years, we present an analysis of QSOX evolution, highlighting universal features vs aspects of the enzyme family that may vary for adaptation to particular functional niches

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.