Abstract

Rice blast disease is the single most destructive plant disease that threatens stable rice production worldwide. Race-specific resistance to the rice blast pathogen has not been durable and the mechanism by which the resistance is overcome remains largely unknown. Here we report the molecular mechanisms of diversification and the instability of the avirulence gene AVR-Pita1 in field strains of Magnaporthe oryzae interacting with the host resistance gene Pi-ta and triggering race-specific resistance. Two-base-pair insertions resulting in frame-shift mutations and partial and complete deletions of AVR-Pita1 were identified in virulent isolates. Moreover, a total of 38 AVR-Pita1 haplotypes encoding 27 AVR-Pita1 variants were identified among 151 avirulent isolates. Most DNA sequence variation was found to occur in the exon region resulting in amino acid substitution. These findings demonstrate that AVR-Pita1 is under positive selection and mutations of AVR-Pita1 are responsible for defeating race-specific resistance in nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.