Abstract
The reactivity of the carbenoid group 13 metal ligands ECp* (E = Al, Ga) toward low valent transition metal complexes [TM(btsa)2] (TM = Fe, Co, Zn; btsa = bis(trimethylsilyl)amide) was investigated, revealing entirely different reaction patterns for E = Al and Ga. Treatment of [Co(btsa)2] with AlCp* yields [Cp*Co(μ-H)(Al(κ2-(CH2SiMe2)NSiMe3)(btsa))] (1) featuring an unusual heterometallic bicyclic structure that results from the insertion of AlCp* into the TM-N bond with concomitant ligand rearrangement including C-H activation at one amide ligand. For [Fe(btsa)2], complete ligand exchange gives FeCp*2, irrespective of the employed stoichiometric ratio of the reactants. In contrast, treatment of [TM(btsa)2] (TM = Fe, Co) with GaCp* forms the 1:1 and 1:2 adducts [(GaCp*)Co(btsa)2] (2) and [(GaCp*)2Fe(btsa)2] (3), respectively. The tendency of AlCp* to undergo Cp* transfer to the TM center appears to be dependent on the nature of the TM center: For [Zn(btsa)2], no Cp* transfer is observed on reaction with AlCp*; instead, the insertion product [Zn(Al(η2-Cp*)(btsa))2] (4) is formed. In the reaction of [Co(btsa)2] with the trivalent [Cp*AlH2], transfer of the amide ligands without further ligand rearrangement is observed, leading to [Co(μ-H)4(Al(η2-Cp*)(btsa))2] (5).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.