Abstract

Richtmyer–Meshkov (RM) instability at a single-mode interface impacted by a cylindrical divergent shock with low to moderate Mach numbers is investigated experimentally. The motion of an unperturbed interface is first examined to obtain the background flow. The shocked interface moves uniformly at the early stage, but later decelerates. The stronger the incident shock, the larger the interface deceleration, which is reasonably predicted by a one-dimensional model considering the effect of postshock non-uniformity. Such a deceleration greatly inhibits the growths of harmonics of an initially perturbed interface and, consequently, the divergent RM instability presents very weak nonlinearity from early to late stages. Particularly, higher-Mach-number cases present weaker nonlinearity due to larger deceleration there. This abnormal linear growth regime is reported for the first time. Benefiting from this, the incompressible linear model holds validity at all stages of divergent RM instability. It is also found that compressibility inhibits the initial growth rate, but produces a weak influence on the subsequent instability growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.