Abstract

Previously, we reported that R(+)HA-966, a weak partial agonist for the glycine/NMDA receptor, and guanfacine, a noradrenergic α2 agonist, have anxiolytic-like actions on the biochemical activation of the mesoprefrontal dopamine neurons and fear-induced behaviors. Here, we examined these two putative anxiolytic agents, both with primary actions independent of GABAergic systems, for their ability to alter stress-induced Fos-like immunoreactivity in the mesoprefrontal cortex and in tyrosine hydroxylase-stained, presumed dopaminergic, neurons in the ventral tegmental area. The benzodiazepine agonist, lorazepam, and partial agonist, bretazenil, were also tested in this footshock paradigm [10 × 0.5 sec, 0.8 mA paired with a 5-sec tone]. In saline-treated rats, footshock resulted in an increase in Fos-li in the prelimbic and infralimbic cortices and tyrosine hydroxylase-labeled cells in the ventral tegmental area. Treatment with lorazepam or bretazenil prevented the stress-induced activation in Fos-li nuclei in all regions of the medial prefrontal cortex and in dopaminergic neurons in the ventral tegmental area. In contrast, the actions of the novel anxiolytic-like agents on stress-induced Fos-li were different than those observed with benzodiazepine agonists. Both putative anxiolytics, R(+)HA-966 and guanfacine, did not reduce, but significantly enhanced the stress-induced Fos-li in the prelimbic region of the medial prefrontal cortex. Additionally, treatment with R(+)HA-966 completely blocked, while guanfacine attenuated, the stress-induced increase in the number of Fos-li, TH-li cells in the ventral tegmental area. These results indicate that the putative anxiolytics, R(+)HA-966 and guanfacine, have actions on the stress-sensitive mesoprefrontal system which appear distinct from those of traditional anxiolytics. Synapse 36:143–154, 2000. © 2000 Wiley-Liss, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.