Abstract

Recent studies have identified a subset of memory T cells with stem cell-like properties (T(SCM)) that include increased longevity and proliferative potential. In this study, we examined the dynamics of CD4(+) T(SCM) during pathogenic SIV infection of rhesus macaques (RM) and nonpathogenic SIV infection of sooty mangabeys (SM). Whereas SIV-infected RM show selective numeric preservation of CD4(+) T(SCM), SIV infection induced a complex perturbation of these cells defined by depletion of CD4(+)CCR5(+) T(SCM), increased rates of CD4(+) T(SCM) proliferation, and high levels of direct virus infection. The increased rates of CD4(+) T(SCM) proliferation in SIV-infected RM correlated inversely with the levels of central memory CD4(+) T cells. In contrast, nonpathogenic SIV infection of SM evidenced preservation of both CD4(+) T(SCM) and CD4(+) central memory T cells, with normal levels of CD4(+) T(SCM) proliferation, and lack of selective depletion of CD4(+)CCR5(+) T(SCM). Importantly, SIV DNA was below the detectable limit in CD4(+) T(SCM) from 8 of 10 SIV-infected SM. We propose that increased proliferation and infection of CD4(+) T(SCM) may contribute to the pathogenesis of SIV infection in RM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.