Abstract

Expanding on a wavelet basis the solution of an inverse problem provides several advantages. Wavelet bases yield a natural and efficient multiresolution analysis. The continuous representation of the solution with wavelets enables analytical calculation of regularization integrals over the spatial domain. By choosing differentiable wavelets, high-order derivative regularizers can be designed, either taking advantage of the wavelet differentiation properties or via the basis's mass and stiffness matrices. Moreover, differential constraints on vector solutions, such as the divergence-free constraint in physics, can be handled with biorthogonal wavelet bases. This paper illustrates these advantages in the particular case of fluid flows motion estimation. Numerical results on synthetic and real images of incompressible turbulence show that divergence-free wavelets and high-order regularizers are particularly relevant in this context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.