Abstract

ObjectiveSeizures are known to occur with diurnal and other rhythms. To gain insight into the neurophysiology of periodicity of seizures, we tested the hypothesis that intracranial high-frequency oscillations (HFOs) show diurnal rhythms and sleep-wake cycle variation. We further hypothesized that HFOs have different rhythms within and outside the seizure-onset zone (SOZ). MethodsIn drug-resistant epilepsy patients undergoing stereotactic-EEG (SEEG) monitoring to localize SOZ, we analyzed the number of 50-200 Hz HFOs/channel/minute (HFO density) through a 24-hour period. The distribution of HFO density during the 24-hour period as a function of the clock time was analyzed with cosinor model, and for non-uniformity with the sleep-wake cycle. ResultsHFO density showed a significant diurnal rhythm overall and both within and outside SOZ. This diurnal rhythm of HFO density showed significantly lower amplitude and longer acrophase within SOZ compared to outside SOZ. The peaks of difference in HFO density within and outside SOZ preceded the seizures by approximately 4 hours. The difference in HFO density within and outside SOZ also showed a non-uniform distribution as a function of sleep-wake cycle, with peaks at first hour after arousal and ±2 hours around sleep onset. ConclusionsOur study shows that the diurnal rhythm of intracranial HFOs is more robust outside the SOZ. This suggests cortical tissue within SOZ generates HFOs relatively more uniformly throughout the day with attenuation of expected diurnal rhythm. The difference in HFO density within and outside SOZ also showed non-uniform distribution according to clock times and the sleep-wake cycle, which can be a potential biomarker for preferential times of pathological cortical excitability. A temporal correlation with seizure occurrence further substantiates this hypothesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.